The Molecular and Crystal Structure of $\left(\mathrm{PCF}_{3}\right)_{4}$

By Gus J. Palenik* and Jerry Donohue
Department of Chemistry, University of Southern California, Los Angeles 7, California, U.S.A.

(Received 8 May 1961)

Abstract

Crystals of $\left(\mathrm{PCF}_{3}\right)_{4}$ are tetragonal, with 2 molecules in a unit cell of symmetry $P 4_{2} / n m c$ and lattice constants $a=10 \cdot 100, c=6 \cdot 397 \AA$. The required molecular symmetry is $\overline{4} 2 \mathrm{~m}$.

Fourier and least squares refinement on 226 visually-estimated intensities were used to obtain optimum values for the nine positional and eighteen thermal parameters. The value of R is 8%. The bond distances found are : $\mathrm{P}-\mathrm{P}=2.213 \pm 0.005, \mathrm{P}-\mathrm{C}=1.867 \pm 0.014$, average $\mathrm{C}-\mathrm{F}=1.335 \pm 0.015$ \AA (corrected for libration). The four-membered phosphorus ring is far from planar, having bond angles of 84.7° and torsion angles of 34°. The remaining molecular quantities are compared with those in other phosphorus and trifluoromethyl compounds.

Introduction

Relatively few compounds containing a phosphorusphosphorus bond were known until the recent work of Mahler \& Burg (1957, 1958) and of Kuchen \& Buchwald (1956). The tetramer and pentamer of PCF_{3}, hereafter referred to as the tetramer and pentamer respectively, prepared by Mahler \& Burg, represent the first case in which the experimental evidence pointed to a phosphorus ring system. The confirmation of the phosphorus ring system and an investigation of the geometry of the ring together with its attached trifluoromethyl groups is therefore of interest. The crystal structure determination of the tetramer was begun shortly after its preparation and characterization by Mahler \& Burg, but the work was subject to numerous interruptions. The structure determination of the pentamer has very recently been described by Spencer \& Lipscomb (1961).

Experimental

The tetramer is a slightly volatile solid which melts at 66° under its own vapor pressure. The colorless crystals can be prepared in various crystal habits depending on the method of preparation. Crystals grown by condensing the gaseous material into thinwalled capillaries always present [100] or [110] parallel to the capillary axis. Crystals grown by sublimation in a tube containing a small amount of carbon dioxide formed as needles elongated along [001]. Both types of crystal habit were subsequently used in the collection of the intensity data.

The following Weissenberg photographs ($\mathrm{Cu} K \alpha, \lambda=$ $1.5418 \AA$) were taken: zero to fourth layer about [100], zero to seventh layer about [110], and zero to fourth layer about [001]. A total of 226 independent reflections was observed. The Laue symmetry is

[^0]$4 / m m m\left(D_{4 k}\right)$. The systematic absences ($h k 0$) when $h+k=2 n+1$ and ($h h l$) when $l=2 n+1$ indicate that the probable space group is $P 4_{2} / n m c\left(D_{4 h}^{15}\right)$. The unit cell has dimensions $a=10 \cdot 100 \pm 0 \cdot 020 \AA$ and $c=$ $6.397 \pm 0.015 \AA$. The density calculated for two molecules per unit cell is $2.00 \mathrm{~g} . \mathrm{cm} .^{-3}$. The only density datum available is that of the liquid at its melting point, where Mahler (1958) found the value 1.54 g.cm. ${ }^{-3}$. The calculated density of the pentamer (Spencer \& Lipscomb, 1961) is $2 \cdot 12 \mathrm{~g} . \mathrm{cm} .^{-3}$ at $-100^{\circ} \mathrm{C}$.

With two molecules_per unit cell, the required molecular symmetry is $\overline{4} 2 m\left(D_{2 d}\right)$. One of the two sets of eight-fold positions of the space group, $8 f$, is eliminated for placement of the phosphorus, carbon, and eight of the fluorine atoms because it requires, among other objectionable features, a $\mathrm{P}-\mathrm{C}-\mathrm{F}$ bond angle of 180°. Positions $8 g,(0, x, z)$ etc., point symmetry m, must therefore accommodate these atoms, with the remaining sixteen fluorine atoms in the general position $16 h$. The number of positional parameters to be determined is thus nine.

Determination of the structure

A Patterson section, $P(u, v, 0)$, gave $0 \cdot 152$ as the value of the x-coordinate for the phosphorus atom, and a Patterson line $P(0 \cdot 152,0 \cdot 152, w)$, gave a value for z of 0.066 . These parameters give a puckered fourmembered phosphorus ring. Of the two possible directions for the phosphorus-carbon bond relative to the ring, one is eliminated because it places the trifluoromethyl groups impossibly close together ($\mathrm{C} \cdots \mathrm{C}$ is $1 \cdot 4 \AA$ for a $\mathrm{P}-\mathrm{P}-\mathrm{C}$ angle of 90°). The other alternative allows two possible orientations of the fluorine atoms relative to the phosphorus-carbon skeleton.

It then was assumed that the phosphorus-carbon and carbon-fluorine distances were $1.83 \AA$ and $1.36 \AA$, and that the $\mathrm{P}-\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}-\mathrm{F}$ angles were 90° and 109°. On the basis of the above assumptions, the

Table 1. Observed and calculated structure factors
Values shown are $10 F_{o}$ and $10 F_{c}$. Minus sign on F_{o} signifies 'less than'

k	\&	F_{0}	F_{c}	n k	1	F_{0}	${ }^{5}$	k	8	Fo	F_{c}	h k	1	Fo	F_{c}	n k	1	Fo	$F_{\text {c }}$	n	k	\&	F_{0}	Fe	n	k	1	Fo	F_{c}
0	0	29	287	19	1	114	-106	11	2	665	711	710	2	97	-85	79	3	101	-102	6	7	4	85	71	0	9	6	18	78
04	0	-00	-13	10	1	113	-116	2	2	452	493	88	2	73	34	710	3	-13		6	8	4	-40	34	1	1	6	103	-107
$\bigcirc 6$	0	725	825	$1 \begin{array}{ll}1 & 11 \\ 1 \\ 1\end{array}$	1	-55	35		2	386	-374	$\bigcirc 1$	3	373 355	386	00	4	211	-212	6	9	4	88	-97	1	2	6	-63	39
$\bigcirc{ }^{-1}$	0	376	349	${ }_{1}^{1} 1212$	1	19	64	1	2	237	-194	$\bigcirc 2$	3	355	-335	01	4	341	-379	7	7	4	-40	43	1	3	6	-54	36
$\bigcirc 10$	\bigcirc	-36	7	2	1	234	-166	15	2	154	105	-	3	242	-235	-	4	-31	-25	7	8	4	78	-41	1	4	6	170	-174
	0	134	131	${ }_{2}^{2} \quad 4$	$\frac{1}{1}$	166	-144	16	2	-43	-48	0	3	284	-283	0	4	331	-329	0	1	5	112	111	1	5	6	-58	-10
$\begin{array}{ll}1 & 1 \\ 1 & \\ 1\end{array}$	\bigcirc	388 225	417		1	-166	-143	17	2	300	306	0	3	444	438	0	4	-67	-34 -265	0	2	5	453	-436	1	6	6	-45	-16
$1{ }^{1} \quad 3$	\bigcirc	225	231 425	$\begin{array}{ll}2 & 6 \\ 2 & 7\end{array}$	1	-54 185	187		2	106	-96	06	3	-49	33	0	4	274	-265	0	3	5	80	58	1	7	6	76	-76
1	${ }^{\circ}$	433 320	425 348	28	1	-49	43	$1{ }^{1} 9$	2	-63	-25	\bigcirc	3	202	211	0	4	-54	7	0	4	5	378	-381	1	8	6	-36	-7
19	0	-35	13	29	1	131	-136	11	2	-63	-82	${ }^{0} 8$	3	-76	-68	0	4	-54	34	0	5	5	-72	26	2	2	6	-49	-27 -83
111	0	-31	-10	10	1	-63	4		2	-36	44	010	3	191	-199	09	,	159	-171	0	7	3	-54	26	2	4	6	68	$\begin{array}{r}-83 \\ -62 \\ \hline\end{array}$
113	0	55	89	${ }_{2} 211$	1	120	-111	22	2	111	85	11	3	-54	-5	020	4	-81	-10	0	8	5	-67	65	2	5	6	-49	21
22	0	1081	1303	212	1	-4,	${ }_{-22} 2$	23	2	314	-279	2	3	241	206	011	4	123	-134	\bigcirc	9	5	-94	13	2	6	6	-58	-47
24	0	403	-460	$\begin{array}{lll}3 & 4 \\ 3 & 5\end{array}$	1	614 375	-571	4	2	429	-397	13	3	250	-213	1	4	-58	15	1	2	5	106	-97	2	7	6	82	99
20	0	102	106		1	132	-385	25	2	246	242	1 4	3	-499	-11		4	308	-312	1	3	5	344	-338	2	8	6	-31	-12
28	-	46	-57 -251	37	I	132 161	-169	$2{ }^{2} 6$	2	151	-144	15	3	279 134	-285	1	4	-43	- 29	1	4	5	-63	45	3	3	6	82	88
$\begin{array}{ll}2 & 10 \\ 2 & 12\end{array}$	${ }_{0}^{0}$	240 -45	-251	38	1	-67	11	$\begin{array}{ll}2 & 7 \\ 2 & 8\end{array}$	2	169	-153	1	${ }^{3}$	134 120	128	$\begin{array}{ll}1 & 4 \\ 1 & 5\end{array}$	4	422	-397 -103	15	5	5	$\begin{array}{r}95 \\ -54 \\ \hline\end{array}$	-78	3	4	${ }_{6}^{6}$	-54 -45	33 46 48
33	0	1211	-1512		1	${ }^{61}$	57	29	2	-34	41	1	3	52	$4{ }^{4}$	1	4	-54	-53	1	7	3	-44	-17	3	6	${ }_{6}^{6}$	-434	131
35	0	395	-413		1		-243	10	2	109	-87	19	3	104	-92	17	4	100	96	1	8	5	-45	-30	3	7	6	-49	-6
37	0	89	-80		1	-63	-41	211	2	-54	52	110	3	-38	19	1	4	-49	0	1	9	5	79	-85	4	4	6	137	136
$3{ }^{3} 9$	0	212	-224		1	204	-210	${ }_{2} 12$	2	-36	-7 ${ }^{7}$	121	3	147	-121	19	4	-58	- 2		0	5	-31	- 7		5	6	63	50
${ }_{4}{ }^{3} 11$	-	147 240	-139	46	1	392	396	$\begin{array}{ll}3 & 3 \\ 3\end{array}$	2	403 74	-360	24	${ }^{3}$	434 204	-467	$1 \begin{array}{ll}1 \\ 1 & 11 \\ 11\end{array}$	4	173 -31	-166	2	3	5	-67	-52	4	7	6	-40	147
46	0	-31	-13		1	118	119	35	2	186	-182	2	3	-49	-14	22	4	140	138	2	5	5	-58	12	4	8	6	-22	22
48	0	55	31	4	1		-61	6	2	376	379	2	3	131	135	2	4	137	-129	2	6	5	185	167	5	5	6	-40	16
410	0	180	-222		1	-49	-193	37	2	-72	64	2	3	97	85	24	4	-49	10	2	7	5	-63	-46	5	6	6	99	81
412	0	-40	-26		1	-49	-129	$\begin{array}{ll}3 & 8 \\ 3 & 9\end{array}$	2	108 177	96 -181	2	3	146 -49	142	2	4	-54 -67	-14	2	8	5	-64	83	5	7	6	-22	
$\begin{array}{ll}5 & 5 \\ 5 & 7\end{array}$	${ }_{0}^{0}$	274 196	248 198	412	1	-36	-22	3 10	2	-49	-181 -31	210	3	-49	-31	2	4	-67 235	32 227			5	-36 -27	-22	${ }_{0}^{6}$	1	${ }^{6}$	47 158	-62
59	0	140	-136		1	-63	21	311	2	128	-125	211	3	-45	-38	28	4	49	20	3	4	5	85	-12	0	2	7	101	-89
11	0	37	-35	57	1	-54	-43	12	2	-36	-31	34	3	236	-234	29	4	4.4	6	3	5	5	183	181	0	3	7	-49	-9
66	0	134	125					44	2	532	-513	35	3	157	146	210	4	-58	-38	3	6	5	-58	-28	-	4	7	119	$\begin{array}{r}-130 \\ -69 \\ \hline\end{array}$
$\begin{array}{ll}6 & 8 \\ 6 & 10\end{array}$	0	175 -47	178	310	1	118	-124		2	- 263	25 22		3	107 282	101 264		4	-31	20	3	7	5	200 -58	216	-	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	7	70 -31	
${ }^{6} 10$	\bigcirc	- -27	36 -36	511	1	-36	34	4	2	212	208	38	3	148	-143	${ }_{3}$	4	-492	${ }^{4} 4$	3	${ }_{9}^{8}$	5	-58 -36	-15	1	2	7	-54	-7
711	0	-22	1		1	340	291	48	2	143	-146	39	3	-49	-49	3	4	-54	-42	3	0	5	-13	-3	1	3	7	133	-136
88	0	31	81	${ }^{6} 88$	1	-54	40	4.9	2	83	74	310	3	73	-86	3	4	275	253	45	5	3	106	85	1	*	7	-49	- 2
01	1	737	733		1	-58	136	410		127	-144	311	3	-49	9	3	4	-76	12	4	6	5	141	151	1	5	7	-36	20
02	1	1009	1156		1	-36	-14		2	-49	-40	43	3	210	-179	3	4	- 188	193	4		5	-54	12	2	${ }^{6}$	7	35 118	
${ }_{0}^{0} 3$	1	262 346	- 293	78	1	175	173	$5{ }_{5}$	2	144	-154	$4{ }_{4}{ }_{4} 7$	3	185 72	189 -71	310	4	-46	-22	4	9	5	92 -40	9	2	4	7	-40	$\begin{array}{r}105 \\ 4 \\ \hline\end{array}$
0 S	1	-45	-43	-	1	-45	35	6	2	186	174	48		184	188	311	4	-22	-32	5	6	5	-67	- 7	2	5	7	-36	13
06	1	173	-189		$\frac{1}{2}$	-40	-14		2	140	143	9		-67	-64	4	4	143	-146		7	5	94	110	2	6	7	60	68
07	1	463	454		2	278 335		8	${ }_{2}$	-63			3	41	-53	4	4	118	112	3	8	5	-40	9	3	4	7	${ }_{-31}^{102}$	102
8	1	129	126	${ }_{0}$	2	415	353 415	10	2	-67	-25	${ }_{5}^{4} 118$	3	79 239	-78 202	4	4	230	-228	${ }_{6}{ }^{3}$	7	5	-27	36	3	6	7	-22	15
$\bigcirc 10$	1	-76	128	03	2	1173	-1300	311	2	46	-59	57	3	138	138	48	4	-63	13	6	8	5	-27	28	4	5	7	-36	26
011	1	-67	11	0	2	111	103	6	2	346	351	58		-58	3	4	4	-58	10	-	0	6	-34	-30	\bigcirc	0	8	100	-108
12	1	-34	28	0	2	196	-196	67	2	87	-54	9	3	-63	23	0	4	32	-53	0	1	6	-63	-12	-	1	${ }^{8}$	-36	13
12	1	17	45	06	2	357	337	8	2	90	103	510	3	-49	-32	5	4	-34	-3	0	2	6	-54	-31	O	2	8	-27	-37
3	1	374	-337	07	2	-43		9	2	-54	63	511	3	-18	37	56	4			0	3	6	178	-179	1	1	8	- 47	
$\begin{array}{ll}1 & 4\end{array}$	1	196	-15.	${ }^{0} 8$	2	186	187	610	2	54	-13	67	3	119	114	5	4	-49	100	\bigcirc	4	6	-72	16	2		8	-18	32 22
15	1	404	389	010	2	-72	-139	7		161	-67		3	-45	-21	59	4	-34	-10	0	5	6	104	-100					
7	1	149	152	011	2	115	-90	78	2	-6, 7	31	610	3	105	-113	510	4	-36	71	0	7	6	-40	-33					
18	1	237	254	12	2	-43	39	79	2	-40	33	78	3	69	46	6	4	-49	28	0	8	6	-45	-31					

coordinates of the carbon and fluorine atoms were calculated for the two different models. In the first model the fluorine atom on the mirror plane was directed toward the center of the phosphorus ring. The second model was related to the first by a rotation of 180° around the phosphorus-carbon bond.
McWeeny (1951) scattering factors for diamond carbon and fluorine, and Viervoll \& Øgrim (1949) scattering factor for phosphorus were used in calculating structure factors for both models. The agreement obtained for the first model was clearly superior, and refinement was started with this conformation. It should be noted that in the correct model the orientation about the phosphorus-carbon bonds is such that the carbon-fluorine bonds are more nearly staggered with respect to the phosphorus-phosphorus bonds than in the incorrect model.

Refinement of the structure

The scale factor and an isotropic temperature factor were obtained from the structure factor calculations in the usual way. A three-dimensional Fourier was calculated by the use of only those structure factors whose signs could be assigned with some degree of confidence. New values for the coordinates were obtained and the procedure was twice repeated. The value of R was 23% at this stage.

A least-squares refinement, including anisotropic temperature factors, was then carried out on SWAC (Sparks et al., 1956), by the use of a program which refines both positional and thermal parameters, and uses the full matrix. Seven cycles of least-squares were carried out. The final shifts were smaller than the standard errors calculated from the inverse matrix. The fairly large number of cycles was required because of an initial error in weighting which slowed convergence.

The final set of structure factors is listed in Table 1. The final R value for the observed reflections, including several reflections which obviously suffered from ex-

Table 2. Refinement of positional parameters

			Least squares				
		Initial	Fourier	Sixth	Seventh	σ	
P	x	0.152	0.1474	0.1476	0.1475	0.0003	
	z	-0.066	-0.0532	-0.0533	-0.0529	0.0005	
C	x	0.282	0.2590	0.2534	0.2536	0.0013	
	z	0.158	0.1852	0.1856	0.1859	0.0025	
$\mathrm{~F}_{\mathrm{I}}$	x	0.193	0.1988	0.1948	0.1943	0.0010	
	z	0.337	0.3651	0.3715	0.3706	0.0013	
	$\mathrm{~F}_{\text {II }}$	x	0.338	0.3329	0.3304	0.3304	
	y	0.111	0.1063	0.0008			
	z	-0.152	-0.1842	-0.1857	-0.1048	0.0008	
R		34%	23%	8%		0.01851	

Table 3. Thermal parameters

		B_{11}	B_{22}	B_{38}	B_{12}	B_{13}	B_{23}
\mathbf{P}	$B_{i j}$	0.0073	0.0093	0.0220		-0.0023	
	σ	0.0003	0.0003	0.0007		0.0009	
C	$B_{i j}$	0.0097	0.0106	0.0349		0.0092	
	σ	0.0013	0.0014	0.0045		0.0042	
$\mathrm{~F}_{\mathrm{I}}$	$B_{i j}$	0.0172	0.0299	0.0283		-0.0148	
	σ	0.0012	0.0018	0.0023		0.0030	
$\mathrm{~F}_{\text {II }}$	$B_{i j}$	0.0217	0.0272	0.0656	-0.0223	0.0335	-0.0064
	σ	0.0010	0.0012	0.0030	0.0036	0.0030	0.0019

tinction, is 8.0%. The progress of the refinement of the positional parameters is presented in Table 2, and the final temperature factors in Table 3. The standard deviations were obtained from the diagonal elements of the inverse matrix. The temperature

Table 4. Principal axis parameters of the atomic vibration ellipsoids

		\mathcal{F}^{2}			
Atom	i	$\left({ }^{\frac{1}{2}}\right.$	$q_{i a}$	$q_{i b}$	$q_{i c}$
P	1	0.220	0	1	0
	2	0.217	-0.3782	0	0.9257
	3	0.190	-0.9257	0	-0.3782
C	1	0.283	-0.4499	0	-0.8931
	2	0.234	0	1	0
	3	0.206	-0.8931	0	0.4499
$\mathrm{~F}_{\mathrm{I}}$	1	0.393	0	1	0
	2	0.320	-0.8744	0	0.4853
	3	0.213	-0.4853	0	-0.8744
$\mathrm{~F}_{\mathrm{II}}$	1	0.461	0.6218	-0.5761	0.5306
	2	0.358	0.0157	0.6865	0.7269
	3	0.221	0.7830	0.4437	-0.4359

Fig. 1. Sections of $Q(x, y, z)$ at $y=0$ and $y=0 \cdot 1$. Contours on the phosphorus atom at $4,8, \ldots e \AA^{-3}$, and the other atoms at 0 (dashed), $1,2, \ldots e . \AA^{-3}$. (The third phosphorus atom of the CF_{3} group lies directly below $\mathrm{F}_{\text {II }}$ at $y=-0 \cdot 1$.)

Fig. 2. Section of $\varrho(x, y, z)$ through the plane of the three fluorine atoms. The trace of this plane is the line $A A$ in Fig. 1.
factors were converted to the mean displacements and direction cosines given in Table 4.

The three-dimensional electron density function was then calculated with the phases as given by parameter set seven. Fig. 1 is the section ($x, 0, z$) with the section through $F_{\text {II }}$ parallel to (010) superimposed. This composite drawing shows that the thermal vibrations of the phosphorus atom are almost isotropic but that the fluorine atoms are vibrating anisotropically, with the maximum displacement approximately perpendicular to the carbon-fluorine bond. The electron density section through the three fluorine atoms of the CF_{3} group is presented in Fig. 2. The trace of this plane is indicated by the line $A A$ in Fig. I. The anisotropic nature of the thermal motions of the fluorine atoms is easily seen in this section. The anisotropies are in agreement with the value of $B_{i j}$ obtained by least squares.

Discussion

Intramolecular distance and angles are presented in Table 5. The intermolecular contacts are shown in Fig. 3. The phosphorus-phosphorus bond distance of $2 \cdot 213 \pm 0.005 \AA$ is in good agreement with the phosphorus-phosphorus distances of $2 \cdot 21 \pm 0.02 \AA$

Fig. 1. Electron diffraction from compressed CsCl ; surface slightly etched.

Fig. 2. Electron diffraction from compressed TlCl ; surface slightly etched.

Fig. 3. Electron diffraction from compressed $\mathrm{NH}_{4} \mathrm{Cl}$; surface as compressed.
reported in P_{4} by Maxwell, Henricks \& Mosley (1935), of $2 \cdot 21 \pm 0.06 \AA$ in $\mathrm{P}_{2} \mathrm{I}_{4}$ by Leung \& Waser (1956), of 2.20 and $2 \cdot 21 \pm 0.01 ~ \AA$ in $\mathrm{P}_{4} \mathrm{~S}_{5}$ by van Houten $\&$ Wiebenga (1957), of $2 \cdot 240$ and $2 \cdot 246 \pm 0 \cdot 01 \AA$ in $\mathrm{P}_{4} \mathrm{~S}_{3}$ by Leung et al. (1957), of $2 \cdot 21 \pm 0 \cdot 01 \AA$ in 1,2-dimethyl-1,2-diphenyldiphosphine disulfide by Wheatley (1960), of 2.20 and $2 \cdot 17 \AA$ in black phosphorus by Hultgren, Gingrich \& Warren (1935), and of $2 \cdot 223 \pm 0.007 \AA$ in $\left(\mathrm{PCF}_{3}\right)_{5}$ by Spencer \& Lipscomb (1961). It is note-

(a)

(b)

Fig. 3. The structure projected on: (a) (010), (b) (110).
worthy that the $\mathrm{P}-\mathrm{P}$ bond distance is sensibly the same in all of these substances where widely different types of $s-p-d$ or $\pi-\sigma$ combinations would be invoked by others in discussions of the nature of the bonding.

The observed distance of $1.867 \pm 0 \cdot 014 \AA$ for the phosphorus-carbon bond is slightly longer than the average value of $1.837 \pm 0.012 \AA^{*}$ found by Hamilton (1955) in $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PBH}_{2}\right]_{3}$ but the difference of $0.030 \AA$ is not significant. Bartell (1960) and Bartell \& Brockway (1960) reported $1.847,1.853$, and $1.858 \AA$, all $\pm 0.003 \AA$ for the phosphorus-carbon bonds in $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{PH}$, and $\mathrm{CH}_{3} \mathrm{PH}_{2}$, respectively. The average value of $1.906 \pm 0.020 \AA$ found in the pentamer by Spencer \& Lipscomb (1961) is slightly longer, but not significantly so. A significantly longer phosphoruscarbon distance of $1.937 \pm 0.017 \AA$ was found by Bowen (1954) in $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{P}$.

The two carbon-fluorine bond distances of $1.326 \pm$
Table 5. Intramolecular distances and angles

	$d(\AA)$	$\sigma(\AA)$		$d(\AA)$
$\mathrm{P}-\mathrm{P}$	$2 \cdot 213$	$0 \cdot 005$	P \cdot. P^{\prime}	$2 \cdot 980$
P-C	$1 \cdot 867$	0.014	$\mathrm{F}_{\mathrm{I}} \cdots \mathrm{F}_{\mathrm{I}}{ }^{\prime}$	$3 \cdot 925$
$\mathrm{C}-\mathrm{F}_{\mathrm{I}}$	$1 \cdot 326$ (1-340)*	0.018	$\mathbf{P}^{\prime} \cdots \mathrm{F}_{\mathrm{I}}$	3.194
$\mathrm{C}-\mathrm{F}_{\text {II }}$	1.313 (1.331)	0.010	$\mathrm{P}^{\prime} \cdots \mathrm{F}_{\text {II }}$	$3 \cdot 470$
$\angle \mathrm{P}-\mathrm{P}^{\prime}-\mathrm{P}$	$84.7{ }^{\circ}$		$\angle \mathrm{P}-\mathrm{C}-\mathrm{F}_{\mathrm{II}}$	$109 \cdot 6^{\circ}$
$\angle \mathrm{P}^{\prime}-\mathrm{P}-\mathrm{C}$	$97 \cdot 8$		$\angle \mathrm{F}_{\mathrm{I}}-\mathrm{C}-\mathrm{F}_{\mathrm{II}}$	105.7
$\angle \mathrm{P}-\mathrm{C}-\mathrm{F}_{\mathrm{I}}$	118.1		$\angle \mathrm{F}_{\mathrm{II}}-\mathrm{C}-\mathrm{F}_{\mathrm{II}}$	107.5

* Parenthetical values include libration correction.
* The much smaller value of $0.007 \AA$ given by Hamilton for the standard deviation of this bond length is the standard error of the mean as calculated from the standard errors of the individual values used to calculate that mean This kind of calculation ignores the scatter among those values. We feel that the standard error as calculated from the deviations of the individual values from the mean is a much more meaningful quantity.

Fig. 4. Two perspective views of the vibration ellipsoids. The axes of the ellipsoids shown are proportional to the respective values of $\left(\bar{r}^{2}\right)^{\frac{1}{2}}$, but are not on the same scale as the bond lengths.
$0.018 \AA$ and $1.313 \pm 0.010 \AA$ are not significantly different. After correction for libration (Cruickshank, 1956), the two lengths are 1.340 and $1 \cdot 331 \AA$. These carbon-fluorine bond lengths are in satisfactory agreement with the average value of $1 \cdot 334 \pm 0.004 \AA$ found in numerous polyfluorides (Sutton et al., 1958).

Several views of the atomic vibration ellipsoids are shown in Fig. 4. One of the valency angles at the carbon atom, namely, $\mathrm{P}-\mathrm{C}-\mathrm{F}_{\mathrm{I}}$, is much larger than the others (Table 5), a condition which may result from $\mathrm{P} \cdots \mathrm{F}_{\mathrm{I}}$ repulsion, although a similar condition was not observed in the pentamer (Spencer \& Lipscomb, 1961), where the bond angles at the carbon atoms show considerable scatter.

Fig. 5 depicts packing drawings of the molecule,

Fig. 5. Two packing drawings of the $\left(\mathrm{PCF}_{3}\right)_{4}$ molecule: (a) View down the 4 -fold inversion axis. The peripheral atoms and the two uppermost atoms are fluorine; only two of the phosphorus atoms (which have larger diameters) show to any extent, the other two phosphorus atoms and the carbon atoms are largely hidden. (b) View along one of the mirror planes.
and shows its approximately spherical nature. The high degree of shielding of the phosphorus and carbon atoms by the fluorine atoms is evident. The volatility of this moderately high molecular weight compound may result from the fluorine-like exterior and high symmetry, both of which limit the intermolecular interactions to van der Waals forces.

Also evident in Fig. 5 is the fact that the intramolecular $\mathrm{F} \cdots \mathrm{F}$ distance (of $3.925 \AA$) in the mirror plane is much longer than one corresponding to a van der Waals contact. (A packing radius of $1.55 \AA$ for the fluorine atoms was used in the preparation of these figures. This value is $0.20 \AA$ greater than that suggested by Pauling (1960, p. 260), as discussed below.) The non-planarity of the phosphorus ring is accordingly not a consequence of steric repulsion between the trifluoromethyl groups. Three changes in the molecular quantities which do occur when a planar four-membered ring, with sides equal to $2 \cdot 213 \AA$, is distorted to give the observed system are: (1) decrease of the cross-ring $P \cdots P$ distances from $3 \cdot 130$ to $2.980 \AA$, (2) decrease of the P-P-P bond angles from 90° to $84 \cdot 6^{\circ}$, and (3) increase of the $\mathrm{P}-\mathrm{P}-\mathrm{P}-\mathrm{P}$ torsion angles from 0° to 34°. It should be noted that cross-ring repulsion, which has been invoked in the discussion of the abnormally long bonds in four-membered rings of carbon atoms by Dunitz \& Schomaker (1952), apparently is not an important factor in the case of four-membered phosphorus rings, since the phosphorus-phosphorus distance in the tetramer is not significantly different from those in the (less strained) pentamer, and probably not different from those in black phosphorus, although a refinement of this latter structure is to be desired. It seems likely that the non-planarity of the ring in the tetramer is due largely to relief of Pitzer (torsion) strain, the equilibrium conformation being attained by a balance between the energy loss due to increase of the torsion angles from 0° and the energy gain due to bond angle deformation plus a small amount, perhaps, of $\mathrm{P} \cdots \mathrm{P}$ repulsion.

Fig. 3 shows the fact that all intermolecular contacts less than $4 \cdot 0 \AA$ involve the fluorine atoms. This observation is not surprising if one considers the van der Waals model of the molecule given in Fig. 5. If one assumes that the shortest fluorine \cdots fluorine intermolecular distances represent van der Waals contacts, the Pauling value of $1 \cdot 35 \AA$ for the van der Waals radius should be increased to about $1.55 \AA$. Atoji \& Lipscomb (1954) made a similar observation in connection with their study of crystalline hydrogen fluoride. The larger van der Waals radius is consistent with values observed in the covalently-bonded fluorine compounds listed by them.

This work was supported by the National Science Foundation. Some of the calculations were carried out on SWAC, which is supported by the Office of Naval Research, with the generous assistance of Dr R.A.

Sparks. We wish to thank Dr W. Mahler and Prof. A. B. Burg for the sample of $\left(\mathrm{PCF}_{3}\right)_{4}$. The figures were prepared by Mrs Maryellen Reinecke.

References

Atoji, M. \& Lipscomb, W. N. (1954). Acta Cryst. 7, 173. Bartell, L. S. (1960). J. Chem. Phys. 32, 832.
Bartell, L. S. \& Brockway, L. O. (1960). J. Chem. Phys. 32, 512.
Bowen, H. J. M. (1954). Trans. Faraday Soc. 50, 463.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 757.
Dunitz, J. D. \& Schomaker, V. (1952). J. Chem. Phys. 20, 1703.
Hamiliton, W. C. (1955). Acta Cryst. 8, 199.
Houten, S. van, \& Wiebenga, E. H. (1957). Acta Cryst. $10,156$.
Hultgren, R., Gingrich, N. S. \& Warren, B. E. (1935). J. Chem. Phys. 3, 351.

Kuchen, W. \& Buchwald, H. (1956). Angew. Chem. 68, 791.

Leung, Y. C. \& Waser, J. (1956). J. Phys. Chem. 60, 539.

Leung, Y. C., Waser, J., van Houten, S., Vos, A., Wiegers, G. A. \& Wiebenga, E. H. (1957). Acta Cryst. 10, 574.
Mahler, W. \& Burg, A. B. (1957). J. Amer. Chem. Soc. 79, 251.
Mahler, W. \& Burg, A. B. (1958). J. Amer. Chem. Soc. 80, 6161 .
Maxwell, L. R., Henricks, S. B. \& Mosley, V. M. (1935). J. Chem. Phys. 3, 699.

McWeeny, R. (1951). Acta Cryst. 4, 513.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University Press.
Sparks, R. A., Prosen, R. J., Kruse, F. H. \& Trueblood, K. N. (1956). Acta Cryst. 9, 350.
Spencer, C. J. \& Lipscomb, W. N. (1961). Acta Cryst. 14, 250.
Sutton, L., editor (1958). Interatomic Distances. London: The Chemical Society, Burlington House, W. I.
Viervoll, H. \& ØGrim, O. (1949). Acta Cryst. 2, 277. Wheatley, P. J. (1960). J. Chem. Soc., p. 523.

The Crystal Structure of Tosyl-L-prolyl-L-hydroxyproline monohydrate

By J. Fridrichsons and A. McL. Mathieson
Division of Chemical Physics, Chemical Research Laboratories, C.S.I.R.O., Melbourne, Australia

(Received 4 July 1961)
The structure of the synthetic peptide tosyl-L-prolyl-c-hydroxyproline, $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{~S} . \mathrm{H}_{2} \mathrm{O}$, has been determined to establish the stereochemical configuration of the sequence-pro-hypro-and to determine the feasibility of using sulphur as the 'heavy-atom' and the tosyl system as a marker group for the analysis of compounds of comparable complexity. The compound crystallizes in the monoclinic space group $P 2_{1}$ with

$$
a=6 \cdot 291, b=7 \cdot 689, c=19 \cdot 640 \AA ; \beta=99^{\circ} 27 \cdot 5^{\prime}, Z=2 .
$$

Intensity data were collected for $0-5$ layers about the b-axis. With generalized Patterson functions $P_{k}(u, w)$, the sulphur atom and a few others on the same y level were located. Subsequent imageseeking operations on modulus generalized Patterson functions and on the zero-layer Patterson distribution indicated the molecular structure which, with the aid of models of the component units -tosyl, proline and hydroxyproline-was established by ϱ_{o} and $\Delta \varrho$ projections. The y parameters were fixed by three-dimensional ϱ_{o} (and ϱ_{c}) syntheses.

It has been established from hydrolysis studies of collagen and gelatin (Schroeder et al., 1954; Kroner et al., 1955) that the proline and hydroxyproline components of these substances occur commonly in the sequence -gly-pro-hypro- and this sequence is now generally accepted in discussing model structures of collagen and gelatin (Rich \& Crick, 1955; Cowan \& Gavin, 1955; Ramachandran \& Kartha, 1955). The structure analysis of a peptide involving the sequence -pro-hypro- seemed therefore to be of interest, insofar as the knowledge of the steric relationships in it might be of some assistance for further developments of these models. We had available for this purpose
the synthetic peptide tosyl-L-prolyl-L-hydroxyproline (Beecham, 1957)- $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{I})$-and this substance

(I)
because of its p-toluene-sulphonyl (tosyl) group,

[^0]: * Present address, Chemistry Division, U.S. Naval Ordnance Test Station, China Lake, California.

